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The paper describes a method for deriving the differential equations and
boundary conditions for the problems of extension and bending of plates of
constant thickness. The method employs the symbolic notation proposed by
Lur'e [1] in 1936 for the solutions to the differential equations of the
theory of elasticity for a slab. These soluticns have the form

mz m
u = Cug m s Q0 + suy’ — m Ad18¢
mz m
v = vy — m 5828 -+ sv¢’ — m AOs 0y (0.1)

Z

, m m
w = swy’ m AN+ cwp — m s8¢

Here
o = Sruo -+ Gavo -+ wy, Do’ = Grue’ -+ dare’ — Awe
(0.2)
A=D?=0821 32 51:_2.. 3 =i
’ ox 2 oy
where m 1is Poisson's ratio.
The symbols ¢, 8, A denote the following differential operators
o ", 2n n o
¢ =coszD — 2 (—1) zz' A" o sin D _ 2 (1)t 2L AR
— (2r)! D — 2n + 1)} 0.3)

00
A — s —z¢ — Z (___1)11 z2n+3An
Py = 2n 1)1 {2r 4 3)

Formulas (0.1) are series in powers of the coordinate =z written in a
compact form. .This symbolic notation 1s very convenelent in performing the
intermediate computations. The quantities o, Uy o, Uy, Uy, wy’ Which appear
here depend on the coordinates x and y and are the fundamental unknowns
to be determined. In another paper [2] Lur'e obtalned a system of differen-
tial equations of infinite order for these functions {ug,..., we'); the ques-
tion of boundary conditions for these, however, was not considered. Obviously,
the substitution of the symbolic equations (0.1) into the principle of minimum
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Equations of the theory of plates 1065

potential energy must lead both to differential equations and to boundary
conditions expressed in the form of series in powers of the thickness of the
plate.

An analysis of Formulas (0.1) shows that the displacements of a thick
plate fall into two froups distributed symmetrically and skew-symmetrically
about the middle plane of the plate. The forst group is characterized by
the functions 1wy, Vs, Wo’ and corresponds to the extensional problem; the
second 1s defined by the quantities wuo’, ¥y’, wo and corresponds to the
bending problem. The same separation into two groups will exist also in the
case of a plate of varlable thickness on condition that its middle plane is
also a plane of symmetry. This enables us to study each of the above prob-
lems separately, which somewhat reduces the volume of computations.

From Formulas (0.1) we can easily derive expressions for the stresses.
We give below some of them (where u 1s the shear modulus)

L 1Y )_ mAd128y
—1

Sy mz
P (axuo+m~z)“msal‘ﬁ°+s(2"l“°'+ 2(m—1)
'_z _ ) o mzsAdy (m —2) 8y mzcty’
= 2o (w0 + ) + T — e [2am G2 - 2(m —1)
(0.4)
mzsd1820 40,020’
f:c(alvo—}—azuo) ———1—;_0‘*‘3(3110 +a2u0) ’2n(ml__a.1o)
Tox nuc@{) 319¢’
The expressions for ¢, and -~ can be obtained from o, and 1T,, by

replacing uo, o', 3, DY Vo, Do, 3;.

1. Variation of potential energy for the extension of a plate. The vari-
ation of the potential energy per unit volume &n 1s given by Formula

On = s be; + o 8, + 0,88, 4 ToyO7uy + TyOTy: + ToxbT2x (1.1)
In accordance with the foregoing remarks we leave only the functions u,,

Vo, Wo' in Formulas (0.1) and (0.4) which define extensional deformation.
We evaluate the strains from the displacements (0.1) and vary them; then
de, = ¢0,0u, —

2( )31 600, bfxy =c (61600 + 626uo) 31336’00

Tm—7)
Be, = eduy’ + s A8, e = 5 (91805’ — Aduy) — m”‘fzalaﬁ., (1.2)

The variations 6&e¢, and 6y,, can be obtained from the varliations &,
and &8y, by the appropriate change of letters.

We substitute into Formula (1.1) the stresses (0.4) which depend on the
quantities wu,, Vs, wo’ and the varilations of the strains (1.2), we obtain

%1 = 2 (cOyuq- c0,0uy + cagvo.cazévo 4 cwy' - cBwy') + (1.3)

-+ ¢ (0400 + B5uy) - ¢b (dlvo + Oguq) + ( 2), (c01¢ - c0:188y + cdyo-c02800) -
+{m cBo- &0+ 2 8 [cdrBy- s (Ato — oywy’) + BxBy-5 (/Ao — dgwe)+-
+ cwp' s N\Bo — 01 (u0'61 + 0o+ 02) 0180 — 05 (001 4 vo-05) $0280]

+$ (Auo — 01t4") - 58 (Auo — 01wy’) + s (Avg — Oawy’) - 58 (Ave — Bqwy’)+

m2z2

+2(m )2 (.5‘01 ﬁo 38125’00+ 236182'&0 36162600—*-3622‘&0 sagzﬁﬁo—l—sA'&o SAé‘ﬁo)
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The dots in Formula (1.3) have the following meaning: except for multi-
plication each dot means the termination of the application of the preceding
operator — after the dot the next operator acting on a different function
applies.

We intergrate the variation &m; over the area of the plate Q . The
result will consist of double integrals containing the variations of the
main variables (Suo, 6@0, Gu%’) under the operator symbols. In order to
derive the differential equations of the theory of thick plates it is neces-
sary to transform these double integrals in such a way that they include not
the operators of the variations but the variations Guo, 53%: 5&%{ themselves.
Such a transformation is made possible -by the formula which generalizes the
familiar formula of Green to the case of infinite operators [3]. This For-
mula is o
Wi e v—2)0videdy = 3 § o (2) 0, 1ds (1.4)
(Q) k=1 (L)

Here [ 1s the contour bounding the region €, Wi(A) is the &th
reduced operator from the operator ¥ (/\). The process of reducing the oper-

fee]
Y (A) =2 & /A\"= a0+ A + e\ ...

r=0
consists of discarding the first » terms and at the same time lowering the
order of the remaining Laplacians by the same number; thus the #th reduced

operator 1s given by the series
[20]

Wi (D) = D) ar AT = ax + aruaA + areA? ...
r=k
Under the line integral sign in (1.4) there are braces (they could be called
Green's braces) which are an abbreviated notation for operations on the pair
of functions within the braces. The meaning of this notation is illustrated

ator

by Expression

aANF1 B 04
{AIH B} = A - Aan] - ank ‘ Ak_lB (1‘5)

The transformation of the variation of potential energy by means of For-
mula {1.4) leads to reduced operators o,, 8, i, which are defined by the

series
_ 1)n+k g2n2k

o0 ( n » - (___._.,..___.._.“._
“= T mram AN %S 2TmrmEn A

- 1)n+k zzn+2k+1

(___1)n+k zz"+2k+3[§"

'kk=20(2n+2k+1)!(2n+2k+3)

After applying the generalized Green's formula (1.%) to the integral
Sjiénrdxdy , the integrals over the area Q, will contain only the operators
3, and 3, of the variations Ou,, 82, 8wy, 1In order to obtain the latter
in pure form it will be sufficient to use the usual formulas for integration

by parts
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S U.-3.Vdzdy =§ U-Vn.ds Sg 0,U -Vdz dy
(¢ (L) Q
gg U.8,Vdzdy =<§ U- Vn,ds-—gg 8, -Vdz dy
Q) (L) (£2)
Here n,, n, are the cosines of the angles formed by the normal to the
contour L with the axes x» and y .

(1.7)

-~
-~

As an example, consider the transformation of the term in the braces which
appears in the varilation of potential energy (1.3); discarding factor
2/(m — 2), we have, according to Formula (1. 4), that

SS cdo- b0 dx dy = S S c20-88 dz dy + 2 (§ {eycdo, 080} ds (1.8)
Q) Q) k=1 (L)

This contains the double integral with the variation @, which has still
to be transformed by means of Formulas (1.7)

{ { ct00-800 dz dy = ( 30a- (@1ua -+ dubo0 + b dz ay =
(f2) Q)
S (czﬂo-ﬁwo' — 20100 8up — czazﬁo-svo) dz dy + & c2dyq- (nxéuo + n‘yévo) ds (1.9)
(@) (D
Substituting the integral (1.9) into (1.8) we obtain finally

S S cBo-cdBodx dy = & 209 Oupo ds +
(0) (L)

+ Z $ {exedo, 580} ds + SS (c20-uy’ — c23,B0-Suip — *sD0-800) dz dy  (1.10)
k=1 (L) Q)
Here we have introduced the natural notation for the quantity
du,y = n duy 4 n,bvy,

which 1s obtained from the variation of the displacement y,, normal to the
contour L bounding the middle plane of the plate. The displacements of
the middle plane of the plate in directions normal and tangential to the
contour L are given by Expressions

Upy = MUy + N0, usy = Txlo — MyUp (1.11y
The variations of the quantities (1.11) will occur in the transformed
expression for the varlation of the potential enery integrated over the area

of the plate.

If we perform analogous transformations to (1.8), (1.9) and (1.10) with
the remaining terms in Expression (1.3) (in all Formula (1.3) contains forty
such terms), we obtain the variation of the potential extensional strain
energy integrated over the area of the plate

_1_“ 8y dx dy — <§ (azm B - ‘”° g - 1903w’ - 1981 g -
(i)

\ on
o) ,
12
0 Buge 4 0800 + O - 3180 - 5 02630) ds -+
o
+ 3 <f> ({84, Sua) + {8, Bra} - g™, Suv'} +- {8, dnduoj +
k-==1 (L)

-+ {g. 3:vo} + {g,2% 6 (d1vo -+ daug)} - {g,3, dwy'} - {g,%2, O:bu0’} -
(Continued overleaf)
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+ {g;®, 880} + {g;%, 01800} + {82, 9000} + {g,™, 012680} + {g,*% 922800} +

+{[g,2, 0:182800}] ds + S S (1 -8uq 4 1800 + 19 8wy’) dz dy (1.42)
(Q)

The functions ¥, 1% ang g, which appear in the expression for the

variation of potential energy (1.12) are defined by Formulas
) 2mz 22 m#2z?
l(°=2(02—82A+m_ =

5 CSA) wy + |:S‘3A + m—3 Zm_—z_)2 (&2 — s2\) A:‘ Yo

1D (2 2 100" ) jmi Adwy’ -

= (2 — $2A\) (B1wo’ — Auo) — 5 ¢sAOwwo (1.13)

m mz?
-+ P [4ZCSA —cz 4 — (¢ — stA) A] 0100

100 952wy’ . . mz 9dcsBe
=n — ny s Aug — nystAvo — m—9 on
mz
101 = chuo —_ n—’l,_——-:_z Csal'ﬁo, 104 — 2 (azuo —_— 61uo)
4mz 2 m2z2
108 — m—3 esAwy + e [(:2 — mzes/\ —m (2 —stA) A] % (1.14)
m2z2 9 s2A 2mz 1 desy’
N0 —= m— 2y on (cz-——z—) B0 + m(nxcsAuo—}- nycsAvo — 5~ —5;;-')
miz? mz

m = 2———(m — 2)2 s"alﬁo — m""—“'__ 3 CSUq

8% = Sy 8™ = 20,8, gl = 2c,018, g0 = c; (dag' + 01g?)

_ 2¢,c00 + mazs;,_,8 mz ]
gh=—sg", gr=—pr—5—— 3 y 5B = w3 €yl (1.15)
mz mz
gl =——s udg, g0 = — 3 % (G + 18
o, mzsA\do . mzsd1Oo
g =cw' + 3 9y gl =ocuo— 377 16
mzcdrBo ’

= s (Auo— o) + -5

The formulas for [, 102, pg g.02 g3 g(i”, €™ £x' g% i® are obtalned
from the expressions for ;i ;n m 01 1 21 31 4 g1 g1 by repla-
cing uo and 3, by Uo ané T s B2 Bror B0 B By s B0 ]

It now remains to integrate Expression {1.12) with respect to the coordi-
nate 2z (over the thickness of the plate 2r); in doing so we have to eva-
luate integrals of the pioducts of the operators o, 8, A and also the
reduced operators ¢y, Sk Agr Sg-1 etc. The first kind of integrals of the
products of trigonometrical functions and polynomials and can be evaluated
in the usual manner. We introduce the following notations:

sin hD S — hC
C —=coshD, § = D A= ~ (1.17)

The integrals of the first kind can then be expressed 1in terms of the
operators (1.17) and the thickness of the plate; for example
h 11
\ ed:=1cs, 2\ zesds =hS*LCA=L
n In (1.18)

.
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h h (1.18)
cont.

S s8dz — h§*—CA, S (2 — *A) dz = 2CS

—h ~h
It is more difflcult to deal with the integrals which contain products of
reduced and ordinary operators. These integrals have to be expressed in
series 1n powers 1n powers of h . Conslder, for example, the integral

_ (—i)"+3+kh2"+23+2"+1 A"+s
Ty = S co dz =2 2 E ©n 725 F 2k 1) (2n & 2k)1 (29!

~-h n=0 s=0
Denote n + 8 =r and sum for the indices r and s . If we now group

together terms in the appropriate way we obtaln

x kpor+ok+1
o Y ()RR 1
k 2}) 2 + 2k + 1 zo (2r —2s + 2k)! (23)]

o0
ar+2k+1
= > (—1y*B,Q IR CabinielN
(1) rek R 3 T ok iA (1.19)

r=0
Since integrals of the type I, are summed for the reduction index ¥ ,
we form the sum from Formula (1 19) and thus obtain

h2r+2k+1 * r
21"“ Z Z (—)™* B3 2r + 2k -1 A

k=1 r=0

Setting r + ¥ = p , summing with respect to
together appropriate terms, we obtain the top line in relations

Sl 2p+1 2
Z S cye dz == 2 (_1) i Z Bpg‘O)Ap—k
k=1

k and P and %roup%ng
1.20

k=1h p=1 o 21
& Praps1 P
=N Ay cnapk
) lghsk S dz Z T ZJ AGOAP
=1 - p=1 k=1
o h o] 1 P 2p+1 p
- (—1)" A (~1) A D=k
2 zsk_lcdz——z AL LA Z Bpk AP
k=1>n . p=1 2p+1 k=1
o P
—i) h2p+3 _
Z ssdz = Z ( 2 (I)Ap k
k=1-h p 1 2P+3 k=1
[o0] h o
1) p2Pi3 A _
Z zsyedz = Z = Z B(;)Apk
k=1 -h p._ 2P+3 k=1 i
oc h P
(—1) h3Pi3 —
kzl Sh e e = 2 T 2p+3 2 A0ar* (1.20)
=1 = k=1
o h P
y! S 22e.cd Z (— 1) L2Pt3 \ (0) A P-k
o dz = S! B,OA
T Hp 113 Pk
k=1 h o PH3T
o h op+3 P
. . —1)" p2r+ 0 -
,:El S} s, s dz __2 ( 91)’_1_3 S oavark
=1n k
o h o P 245 '
\ a0 - Q) —1 holto % -
Z ysdz = >_; (—_.’;_1—_5_' }J Aps‘l)An k

k=1 -l =1 k=1
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The numbers wlith three indices Ap(kn) and Bp(k"). which appear in the opera-
tors of (1.20) are defined by Expressions

¢ p—k 9 p-k
4. _ 2 (n) _ 2
Pk , B = 1.24
S @p—2s+ )l (25 + 1) Pk Eﬂ (Zp—2s + n)l (2s)! (:24)
The values of A Sc") and B (k") for n=—2, —1, 0,1, 2, 3 for certain values

of the indices p 'gnd k are given in the following tables.

Table of values of A}

4 k no=—2 n=—1 n=1>0 n=1 n=2 n=3
1 1 i
1 1 2 2 1 -3 T w0
4. 2 1 13 i 1
2 1 3 3 ey 180 60 35
1 1 i 1 i
2 2 1 5 1 w0 360 520
3 ' 4 & _t L 73 t9t
15 45 0 168 60480 907200
3 9 Y 3 4 t 3t 13
4 180 60 315 60480 181440
3 3 t L "y Y t t
12 60 360 20 20160 181440

Table of values of B(Y

pk
P k n=—2 n=— n=20 n=1 n=2 n=3
1 1 1
i i 2 2 1 ry ETH 50
& 7 11 2 11
2 1 2 = TR ) 5 Too
1 1 1 1
2 2 1 3 Tz 0 360 %%
2 4 3 19 M 163
3 1 3 ETY 360 840 a0 181440
_T 11 2 il 2 37
3 2 12 60 45 1260 20160 181440
1 1 1 1 1 1
3 3 12 60 360 2521) 20160 181440
We evaluate N
L= Ve
Zh
using Formulas (1.18) and obtain
w_ 2 2 . it - Sitg <~ n,CSve) —1 1.22
Loo — o (h$2 — CA) wo —mE’ﬁo 4 (n CSup <- n,CSvo) —huno (4.22)

L= 2(h-+ CS)up— Z—(Fm—_——Z) Ed o, LY = (h 2- CS) (B2up — 6170)

2m 4h(C? 2 o
e EAwy + =5 U0 + T =2F [2(m —1) E —mACS] Ao

L% = n —2
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(% + 3cs\ 80— ‘ioiﬁ’

( 3md,
W+ S m — 2))]
m? 2 010 mEuy
= [ =35 2),[ B2 (h—BCS)—}—E] A T —3
Taking into account Formulas (1.17) and (1.18) and introducing the nota-

tions
H=(m—2)hCt— mh2CSA (1.23)
h
for the operators we can evaluate L‘”:S 1) g;.  we obtain

-h

m 8 [ mh?
I =m——§(""EAu° + nyEA) + 5 (mm— 5 - [m ool

L

2mE 2
LY = 208 (d1wy’ — Aug) — ”*% Orwoy’ — %;;zm 019
2mE 2 (1.24)
L® = 2CS (2w’ — — oy — 2 m % we' - m[(m(—'—ni-)_g)%—}- H] (80 - wv)

The expressions for L%, I!? and L® can be obtained from the formulas
for L%, f11 and 1) by replacing u, and 3, by v, and 3,

Let us now find the variation of the potential energy of the whole plate
in 1ts extension

8 = § dz gS 8m; dx dy
S (0)

To do so we integrate Expression (1.12) over the thickness of the plate
2n , making use of the device we have just obtalned, namely Formulas (1.20),
(1.22) and (1.24). We thus obtain

8 _ SS(L‘I’ Suo -+ L. 890 4 LO. bwy) du dy &( -du o+———-— -8vo +
Foo )

oL
L0 815g" - L%+ Sumy - L%+ 8tsg0 - L1968 - e a 8000+ Lo Gazﬂo) ds +

o P
(— 1)? p2P*1 D 1 Op 2 __
+(§){Z 2p+1 2 [A Do T 2Bk D

- 3]
pk )(Dpk_l +

k=1 (1.25)
»
(_1)1’ h2p+3 2 B (1)0 8)
Z k — By ' @) +
-~ 2p+3 k=1[ » pER
_ 1 h2P+5
M= z)z (Byf ®p — Ayl 1>a>p,‘3)] z)a Z 4 21)n+5 Z A"y }

Here the quantitles ¢, can be expressed by means of modified Green's

braces aA"’lB aAp_kA

(4, Bl = AP A 50— — 5 A"B (1.26)

Thus ¢“~‘ can be expressed by means of the braces
@1 = [01wy’ — Auo, Buo] + [Baw’ — Avo, Sv0], D[ = 3180, 1800] + [020,, 9ab80)
CDpZ = [B1uo, 01duo] - /2 [(B1v0 + dsug), 8 (0100 + 0aug)] + [Oavo, 030v9] + [wo’, Swo’} +
1
+ 5 [80, 880], @, = [01D0, Suo] + (9200, S0] + [w0’, SBo]
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(Dplt = [&wa' — Nug, a;éwg’] + [3gwg' -~ Ve, agéwo’], pojg e 3/’2 fAﬁg, 6'&0]

pi = L Aue — drwe’, 1800] 4 T Avo — dawy’, G2880] + [Ado, Swo'] — [0120, O18ud]
— [018280, & (9100 + Ogug)] — [92200, F2890) (Dp;? == [81D0, 801wo’] -

{- [Batte, F20wy’] + [Drto, 01209 0) -+ [B1v0 | Bguo, 010:880] + [O2ve, 922800]

pie == [01%00, 015080} + 2 [61028, 3182000] -+ [32Dp, 3:250] 1.27)

2. Variation of potential energy of bending of a plate.

The deformation of a plate in bending ls characterlized by the quantitiles
Uo ! ’ Uo I: wO .

Evaluating the variation of the deformations corresponding
to bending in accordance with (0.1}, we obtailn

,» ’ mAd:% xa d ;

B = s 0ug’— £ 1 gy 800, 81wy = 5 (91600’ + 858uy’) — st 2) 80y (2.1)
Sk, = — s awo_;f(‘s*‘;‘;) 80',  O7u = c(Oug - Gléwo) — gy 0180
The variations 6e¢, and &vy,, can be obtalned from the varlations
8y, , by an appropriate change of letters

e, and
We substitute into (1.1) the bend-

ing stresses corresponding to uo’, Ve ', W from Formalas (0.%) and the vari-
ation of deformations (2.1). Then

9
—6}? 2 (s0yuq’ - $0,0uy + $05v¢ - $9200y" -+ sAwg - sAwe) + mb (sAw" s50)

2 (m — -+
+ 5 (0y¢’ + Daug’) - 8 (8,0¢" + Gauo’) + m——tﬁ?—yésﬁo -580," -+
m2z2

+3 e Ty (8918 501884 + 558 sazwo)+”“’”m—:%; By’ - c89, —
6[6(“0 +61w0) Sal'ﬁ‘o +C(UQ + azwo) 362'00 —-—C'ﬁ‘o 9A'£U0] —f—

+ ¢ (ao + Bywe) -8 (uy” + O1wo) + € (Vg -+ Fawp) - €8 (v + Fawp) -+

- 2(m

+8’('j;“f";)2 (5 + 26) 880’ — s 8 [0 (g’ 31 + v -3a) i +
+ 05 (g’ 01y +05) 0sh ) — ot - AR+ (2.2)
+ §m =1 1)2

(M0 20y’ - A8, 280y + 200,020y - M9,10500y" + 05204 - A02804)
Integrating the variation of potential energy per unit volume {(2.2) over
the area of the plate

N and transforming the integrals so obtalned (in all
there will be forty six) by means of the generalized Green's formula (1.4)

1
and the formulas for integration by parts (1.7), we finally obtain

N g\ Srsdr dy = (ﬁ (61:01 -Suq

k02
A 2 Bwg” - B9 B - K93 8w +
] an o ° o R
(@5 (L)

oK k12

RSy -+ 10800 - G 80180’ - g + 50u ) ds -

oo

+ 3 ® 161,00, 8 (o’ -+ duwa)} + {14, 8 (o -+ )} + {1, S} £ (1,31, drbua’} +
k=1 (L)
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{22, 33000’} + {120, 8 (3100’ + Bauo)} + {2, 806} + {1, 91680} + (1,32 028007} +

+ {f,4, 012800} + {1, 22, 022000’} 1~ {f, 2, 0102000"}] ds +

+ SS (K. 8uy’ + k) .80y’ + K. dwy) de dy (2.3)
&)
Relations (2.3) contain the variations of the quantities
dw,

Wy = nxuo’ + nyvo' _— “a_‘

0’ uso' = nx‘l)o' —_ nyuo' (2.4)

The functions k), k¥ and fkij, which appear in the expression for the
variation of potentlial energy (2.3) are determined by Formulas

2mz
W = (2 — s2A) (uy’ + dwy) — 1 csN\O1wy — (2.5)

A (mm_ 1) [(m —2) s24 8 (m — 1) z¢s + mz? (2 —s2A)] o’

k(0)=—2<cz—szA—l— TlcsA>Awo+

m

+ mi———i)ﬁ [(Bm? — 6m + 4) 2A — & (m — 1)2 2 — m?22 (¢* — $2A) A] 8¢

k9 = nc?uq’ + nycvg’ 4 5(2,; [czwo — Z—m(f,—i% + k°3:| ) k= 25Puy” — 2’"(%_63?%
koS — Zr:;zc_s—Aiwo +3 ™ 1_ Ty L4m (m — 1) acs — (m —2)$* +- m223 (¢ — 2A\)] Do’

kOt = s? (Bauy’ — B1vy’), k=35 (mmﬁ_ 1) [;;;ffoi’) - s“"’] 2.6)
k10 — mmtf) [re AN — z¢) suo” + ny (AA — z¢) sv’] — 27;::1:_—1) %@ +

 om2 o (., M )
WWTW%GWHTNO

Mt =cp9l, f[(X= 23;,__11, flt =25 101fY,  ['0 = 3 (02f1 -+ 81/2)

I = gy i 2o o+ T b, fo=— @
Here ) 1(2.8)
O
Pormulas for k%, k%, K% /% fi12, £33 £i® f* ang @2 can be obtained from

(2.5) to (2.8) by changing the letters.

In the integration of the Expressions (2.3) over the thickness of the
plate, in addition to Formulas (1.20) wé must use analogous relations con-
talning the operators X and A, for the subsequent transformations. These
relations can be expressed in the form

h .,
® ¢ o 1)P p2p+5 I

2 Lo = 355253 ot

<

k=1 —h =1 k=1
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h

0 (___ 1)1) h2p+5 k

> S Mysdz = 2 T 5 2 Dk AP (2.9)
k=1 -h k=1

oo ’.l (o) (_ 1)1) h2p+7 11‘ okt

2 S?\.kkdzzg"—z‘pfﬁ—zl"pk&

k=1 —h p=1 k=1

The derivation of relations (2.9) follows the same pattern as (1.20), The
coefficlents (,,, D, and F,, can be expressed in terms of the numbers with

three indices (1 21)

Cor = Bp+1 kT Ap+1 o Epg= Apkm) + Apk(l) + Bpk(O) + Bpk(l)
(2.10)
D Alﬂfm Ap/€(3)’ vk — Bp+1 k Ap-k1f2l)f - Bp+15312 + Ap+15313
We now evaluate the operators
oo h
K'={Ka, k9= (1d
—h —h

using integrals of the type (1.18). We obtain

= 2 (kS — CA)ug — " =8B 5,9y, K™ = (hS*— CA) (Oaus’ — D100
K®=h (nxuo 4 nywe 4 aw°) + n,CSuy’ + n,CSvy +

a3 mEﬁ()l [ .
—l'— (—,,;{ [CSZUO —_— '*—__1)‘ T 1\03]

4 (m
Koo = TEL% 4 2(”‘1_1)2 [(m—1) (m — 2) E — (m — 2)* hS® -+ m*h*CS |0y
R o)+
4+ m’"__’_m(% (? + %E_zhsz_wcs)%'
K= gl (5 — S B+ 2080 1208 B A ey (2.11)
K = 208 (ug' + 0y0) — 2EL 0,000 — ’gg_+ﬂ 8,00 ,

K —— 205 (8 + 2Aw0)— 228 = HE =) gy .
F — mh2CS + (m — 2) hS? (2.13)

m—1

Formulas for the quantities K%, K12, K® can be obtained from the for-
mulas for K, K11 K1) by replacing u,’ and 3, by vo’ and 3;.
The variation of the potential bending energy of the whole plate in 1its flex-
ure 1s obtained by lntegrating expression (2.3) over the thickness. We have
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LLLL I SS (KW .8uy’ + K® .80, + K®-bwo)dzdy +
Q)
1§ (B2 buyg 4 257 oy - KO0 by -+ KB - KO-+ K-804
(L)
x 14 4 h2p+1 p
O 80Dy + T - 80,04 ds + ?{Z G 3 [ Btk
(Ly “p=

k=1

— 245 Yok — iy (4

1Dh2p+3
‘”-}«B‘” ] 2(21))4-3

X 2 [A IFP#“*‘A(m 1) (A (0) thPk) + 5—7 S(m 1)2 ‘Fpk] +

k=1

1)P 12045 <
+amoy Z = 2p) +5 2 [2 =ty Ark Yok — Co¥ok —Dpk‘lf'p}f’] +

k==

(_ 1)2) h2p+7
+8(m 1)2 Z’ 2p+17

S P thds (2.14)

k=1

The functions pkj are defined using the modified Green's braces (1.26)
by the following relations: (2.15)

IIJ‘;D&_O = lAu’o, a'&oll, ‘Fpkl = [uol -+ alu’m & (H’O, + axwo)] +

+ [vo” + Bgwg, 8 (vy" + Oatwo)]
\P‘sz = [Awﬂt 6?00}, ‘Fpks = [\(}0,, 6?]/’0}, \P.pk-} = ["3’0', 5'\30"!
‘Fpk‘l = 2 [61”0', 66111,0,] "{— [al?,’o, —+— O)UQ,, 6 (01?)0' + 02”0’)] + 2 [6200'1 6a2v0ll+

+ 2(m_ ) For® + 2(:';——21)2 Yo', Wi = (0180, 60105") + [928y', 88:8¢')
Wor® = Wpi? — [018¢, 6 (1 + 1)1 — [02y, 8 (0o + dawy)]
Wi’ = [ug” + Oyiwe, 80184'] + [vy” + Fatg, 8050,']
Woilt = [8,30y", 80,20] + 2 [0:049¢", 88,0580’ ] + [0:20, 60:28,)
Wor® = [078¢, 001" + (010284, 8 (Oauo” + 0124")] + [9:28y, 80.04")
Worl® = [01uy", 0070y | + [Fquy’ + 01", 60,050,'] + [0524, 88:29,]
3. Elemental work done by the external forces applisd to the plate,

We first calculate the work done by the forces applied to the faces of the
plate; the elemental work of these forces i1s

8.1 =\ g(p*-éu*'—»{-p‘-ﬁu‘) dx dy (3.1)
[te))
Here P* denctes the vector of the external forces per unit area of the
face z = h ; the vector P~ acts on the face 2z =-—h ; u" and W are

vectors of the displacements of points on the faces 2z = + h . Expanding
the scalar products in (3.1), we obtain

p*-Sur - p-SuT = pt8ut -+ pt Bvt 4 p* dwt 4 p."0u” 4 p, 80 - p, b

The values of the variations of the displacements at the faces can easily
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be obtained by varying Formulas {0.1)  and substituting for ¢ the values
+h or - h ; for example,

+ = CBtg — mhS . mA ’
du Uy ST m—2) 1000 + Sbug 4—-—-—-——---(m p—y 31684 (3.2

The operators ¢ , § , A which appear in Formula (3.2) have already been
defined by (1.17).

It is evident that the problem of the extension of a2 plate corresponds to
combinations of surface loadings glven by Formulas

Pxt - Py” = Ny Pt py = Nys P —p =0 (3.3)
whereas the bending problem corresponds to
Pt — P =txy, P —P =k, PP =P (3.4)
In addition, we introduce the differential combinations of the loading
My -+ Gany = 1%, Oty + Oaty = 1t* (3.5)

Then, substituting the variations of the surface displacements {formulas
of the type {3.2)) into the elemental work (3.1) and taking into account the
notations (3.3} and (3.4), we obtaln separate expressions for the elemental
work done by the surface forces in the problem of extenslon (bAl) and in the
problem of bending {(84,) of a thick plate

84y = S S [nx-Céuo + 1y C8vg +- L - Sdwo’ —
@) m 5 (qx~hSal+ny~hS83w§-AA)600] dedy  (3.6)

~2(m—

54y = &3 \_tx-SGuo' + 1,86 -+ p-Cwy —

Q) m .
— e f .+ A .
I i)(tx A8+ 1, A+ p hS)Sﬁonxdy

We transform Expressions (3.6} with the aid of (1.4) and Formulas {1.7).
Using the notations (1.5),(1.11},(2.%) and (3.5), we omlit the calculatlons
and simply state the result

0 = S S [(Cx — 8:E)-8uo + (CMy — 828)-8v0 + (SL +E)-duwy’] dz dy +
Q) oo
- 2 § {{C-’(nxv 5“0} -+ {Ck'qy; 63’0} + {Skg, 611;0'} +
k=1 (L)
+ 2— (mm_ ——2) ({Ak~1 gs 5‘8’0} —h {Skﬂx, 661’6‘0} - 3 {Skny! 532003” ds +
}
+ CS) [8"5“”“ T2 (: = 7) (S + "uSny)-ﬁﬂo] ds (3.7)
(L)

54y = S 3 [(Sty — 318)-Bug + (St, — 828)-8v0’ + (Cp — AB)-bwo] dx dy+
() 0
-+ Z @ [{Sktx, Suy') -+ {Sktyt 67-*0,} + {Ckpv 5“‘0} -
k=1L)

— iy (e 850063 + (Autys 802087+ (1S, 500 | s +
a0 m ,
+ (§ (960)0 + 30 -dwp — Im=1 {nxAty + n,AL) 800 ] ds {3.8)
(L3

Here for brevity we have introduced the guantities E and €, which denote
the following differential operations on the surface loading:
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[~ m m
BE=__"____(hS9*+ A 0=__" (At*—
2(m—2)( n* -+ AAD), T 1)(At hSp) (3.9)

Note that without loss of generality we can assume that there is no sur-
face loading p , since the problem of the equllibrium of a thilck plate
(both in bending and in extension) can always be assumed to consist of two
parts: (1) the problem of the equilibrium of an infinite slab under the
action of surface loading, the solution of which is known [4], and (2) the
problem of the equilibrium of a thilck plate loaded at the edges with no load-
ing on the faces. Thus the problem of the state of stress in a thick plate
is reduced in fact to the problem of finding homogeneous solutions which
correspond to the absence of loading on the faces[5]. The derivation of For-
mulas (3.7) and (3.8) was carried out with the aim purely to give a uniform
approach to loadings of any kind.

We proceed now to the calculation of the work done by the external forces
applied to the faces of the plate. We denote the vector of the surface
loading per unit area by @, ; then the elemental work done by the external
forces will be h h

8A" = S dz§ qp-Ouds = S dz& (gnxOu + gy 67 + q,,,0w) ds (3.10)
—h (L) —h (L)

We vary u, v, w and substlitute the result into (3.10) in accordance
with Formulas (0.1). Then we change.the order of integration and separate
the parts of the elemental work done by the external forces which refer to
extension 64, and Dbending 64, . We obtaln

h h h
043 = § {x Qnxcdz Sug |- S Inycds Svo + S Inz5dz-8wy’ —
(L) =h —h -
h h h
m
— m ( S GnaSz d280100 -+ S @nyss d200,8¢ — S Insh A dzﬁﬂo)} ds (3.1%)
—h —h —h
h h h
044 = § { S InxSdz Bug’ -+ S Gnysdz Svo’ - & Gnz €dz Swp —
(L) —h —h ~h

L
h h h
m ’ ' ’
—Zm—1) (m—1)(S Gnx Az 8018y + \ gnyhdz 83280 -+ g q,,zszdz&ﬂo')} ds  (3.12)
—h —h —h
In an actual calculation of the integrals in Expressions (3.11) and (3.12)
we expand the loading q, = q, (z) in a series in powers of =z , then, after
completing the relevant calculations the formulas for &4, and 64, are also
represented in series in powers of the thickness of the plate.

Another method 1s to introduce the statical and hyperstatical character-
istics of the distribution of external forces applled over the faces of the
plate

h I h
Ry = g Inxds, R, = Q anydz, Q = S n2dz
~h Y =
h h h
M,=— K gny2ds, M, = g Gnx2dz, W= S Gn.2dz (3.13)
= =n i
h

('—1)” \ 2 25 (_1)11
RV = Tonr | dnat™ dz, RSOV oy | g
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h h
(=1)" Qi
M) R S Inye®™ dz, M, (2n+1) _ (2( T z)l S gnxzdz (3.14)
—h
h
(=1 ir
Qi — o)l g Gns22" dz, wiznt1) —(2(n+i)l g G2t dz
-h .

Here AR, and R, are the projectlons of the principal vector of the sur-
face loading on the > and y axes; { 1is the shear force; N, and ¥, are
moments about the x and y axes., In addition we have the hyperstatical
characteristics: ¥ is a biforce; R and R,®) are polyve:tors;

M @Dy (2n4D)  are polymoments,Q(zﬂ) are shear forces and finally, w(an+1},
aré polyfof’ces (polybiforces) of various orders. Letti. 8, . assume
their original meaning (0.3) and using notations (3. 13) a.nd (3 14), we obtain

8A; = @ {R Buo + Ry B0 -+ Wowy' 1+ Z‘, [R CON (A"uo+ 52 A”*‘ﬁo) +

(L) n=1
+R, (2n) g ( A" = b AP19 o) S WenD g ( APy — "i‘ 5 An%)]} ds (3.45)

84, = @ {Mu'G“O'—Mx'avo’-l- Qbwo + 2 [My(’"ﬂ)-ﬁ (Anuo'-}- m
(L) n=1 2m

— Mx(snu)‘s!( Aty -+ 2”:"1 5 A"_lﬂo') + Q.5 ( Ay - 2”:"_'_‘_ e ﬁo’)]}ds (3.16)

4, Differential equations of the theory of thieck plates. In order to
derive the differential equations (and boundary conditions) we equate to zero
the variation of potential energy of the whole system which contains the
variation of potential strain energy of the plate and the variation of poten-
tial energy of the external forces. The latter 1s equal to the elemental
work done by these forces but with a negative sign. The extension-compres=
sion and bending problems can be studied separately. From the principle of
minimum potential energy for both these problems we have

S, — 64, — 84, =0, &I, — 84, —84,=0 (41)

The quantities which occur here are given by Expressions (1.25),(3.7),
(3.14),(2.14),(3.8) and (3.15). Pormulas (%.1) contain double integrals
over the region of the plate () and an infinite series of line integrals.
Equating to zero, the coefficlents of the independent variations Guo, va
Sw,’, Ouy’, 8v, and 8w, in the double integrals, we obtain the differential
equations for the problem of extersion L and of bending X

3 a’AHW) N

LY — —:; (C'lf— 8,8), KO — —:l— (St — 8,8)
L — _;_ (Cn,— 8.8), K2 — _1_ (St, — 0,0) (4.2)
_LO— % (—St—8), —K9= ( Cp +.A6)

In the last of the equations of system (4.2) the signs have been changed.

The differential equations of equilibrium for a slab have been obtained
by a different method by Lur'e [2]. We introduce the column matrices (vec-

tors)
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uo’ 'Ix tx
’ W= ’ (4.3)
P

and the square matrices a =|ay], a=]]a.kl" with elements

hC
By = —2 (SA—I- n'Ln—-2 akz) | ey = _nzl"lhg 0,0;, a,=20, (S __mhi)

Ug
U=\|v

wo

m—2
e —g—— k T — —
Gge = — — agy=——= [2(m 1)C  mhSA] (4.4)
hS V hS hS,
Ujy = 203_ mm_ 1y an=— mm__. 1 %% =0, (ZC +Z A)
= % =_A — — 4.5
Ay =y [(m—2)S 4+ mhC],  og —£. [(3m —2) § — mhC] (4.5)

where %k, ! =1, 2 . Lur'e's equations can then be written in the form
1
au = 1), aw=_1 t (4.6)
I B’

The matrices @ and ¢ transform the vectors wu, w (to the accuracy of
the factor '/u) into stress vectors on the faces of the plate. The deter-
minants of the matrices a and ¢ g:lve the operators of the solving equa-
tions for the stress functions of Lur'e [2 and 4]. These determinants are

|al=— 16m

- (CS + R SAY, [a]= m_s_”_‘_i (CS —h)CA (4.7)

In additlon to the matrices 6 and ¢ , we introduce the matrices
and B which transform the vectors y and w 1into the displacements at the
faces of the plate. The elements of these matrices are as follows:

b o M50 _ mhSo, _ mhSd,
e T m—2) MT T 2m—=2)' BT 2(m—2)
mANG, mAA (4.8)
bo = ——k_ = _mhL
* 3 m—2)" on S+2(m—2)
B =5 mAd,3 __ mAod, 8 mAND,
kk i(m—1)’ M= " g m—1)" k= Tm—1)
(4.9)
- lnhsak _ lﬂhS[ﬁ

The determinants of the matrices 2 and g glve the operators of the
solving equations for the functions of displacements in problems of a slab

or a plate for displacements specified on the faces 2 = + 5 . These deter-
minants have the following values:

C )
=— " _[(3m —4)CS —mh = —
&l Tm—13) [(3m —4) I [BI= im )[(3m 4) CS + mh) (4.10)
Equations (4.2) can be derived from Lur'e's equations (4.6) by pre-multi-
plying them by the transpose matrices J* and pg* , the matrices so obtained

= b*a, e = f*a (4.11)
in contrast to the matrices a, q, b, 8, are symmetrical. Thelr elements
will not be written out since they form the left-hand sides of Equations
(4.2) defined by (1.24) and (2.22). The determinants of the matrices e and
¢ can be obtained by multiplying the first of the determinants (4.7) and
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(4.10) or the second of the determinants (4.7) by (4.10). Since the matrices
b» and B are nondegenerate (*), there 1s complete agreement between
Lur'e's equations (4.6) and Equations (4.9) derived here. From now on we
shall start from Lur'e's equations, since these are simpler.

Assuming the operators ¢ and § in (4.4) and (4.5) to have their ini-
tial meaning as series in powers of the thickness of the plate, we can
rewrite the system (4.6) in the form

& )\ p2nt1
Z Rt i sl A" [leo’ —Auo—(2n 4 1) m&lf}o] ==
n=0

ey m—2] 2u
S (4.12)
(—1)" K2 [2am —1 a1 .
ngp (2n)! A [ m—1 'ﬂo——wo] = _~4_p'_
x
(_ 1)" h‘Zn n , nmalﬁo’ tx
ngo_(i;tr A\ [817170 4+ uy + m] — E}]‘
s (4.13)
— 1)“ h2n+1 n . + I , ,
Eo(z—nﬂ‘)!‘lk [Awo+ L o] = — 2

We have omitted the second equations of systems (4.12) and (4.13); they
can be derived from the first equations of these systems by replacing
01, Uo, Tlx’ uO, and tx by 621 Vo, nyl UOI and ty-

From equations (4.12) with n = O and in the absence of surface loading,
we can derive the familiar equations of the plane problem expressed in terms
of the displacements 1y, and U, (wo’ 1s easily eliminated). The next appro-
ximation (n = 0 and n = 1) refines the plane problem and leads to a fifth
order harmonic system of differentlal equations requiring five boundary con-
ditions. For system (%.13) retentlon of only the first terms (n = 0) glves
no result {**). Retaining two terms of the series in each of Equations
(4.13) we obtain, after eliminating the rotations uo’,and vo’ the bilhar=-
monic equation of the theory of thin plates. In order to obtain a more accu-
rate theory of bending more terms must be retained in the summations in

(%.13).

5. Boundary oconditions of the theory of thiok plates. Relations (4.1)
lead to boundary conditions, as well as differential equations, in the form
of an infinite seriles of line integrals. Confining our attentlon to a speci-
fic power of h , we can derive the boundary conditions for a system of dif-
ferential equations corresponding to the approximation selected. There are
in addition certain general concepts worthy of mention in connection with
the boundary conditions for thick plate theory.

*) Degeneration of the matrices » and g occurs when there is no dis-
placement at z = ¢+ h , i.e. when the faces of the plate are filxed. Thls
case 1s not considered here.

*%) A1l the displacements (uo’, Uo’, wo) are eliminated from the system
leaving the condition of equilibrium of external forces &1t - dat, + ph =0
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Formulas (3.13) to (3.16) lead to the obvious requirements applicable to
the force conditions on tle edge of a thick plate: the equality of the stat-
ical characteristics (the principal vector and principal moment) of the ex-
ternal surface forces to the statical characteristlcs of the stresses o, ,
Toss Tuy @S well as the hyperstatical equivalence characterized by biforces,
polyvectors, polymoments and shear forces of higher orders. In particular,
on an unloaded free edge of the plate the integral characteristics (3.13)
and (3.1%) of the stresses o,, 7,, and T, must be equated to zero.

Similarly, for a built-in edge of the plate (in the extensional problem)
we must impose the conditions

Ug — O, Uy = 0, wO' = O, A Uo + alAn—lﬁo =

5.1
Avo-l- ©-h

since if the force factors are nonzero the variations of these quantitiles in
the expression for the elemental work (3.15) vanish.

a2A"'1'ﬂo~0 A"wy — mnfz A =10 (n=1,2,...)

In the problem of bending of a plate the conditlons for a built-in edge are

uo’ == O, Uo O wo - 0 A uo + 2( alAn-l'&o = 0 (5 2)

A”O'*‘z(m 1)«3,&"14}0_0 Anwo+2( — A”“O.,_O (n=1,2,...)

Note also that in est blishing finally the boundary conditions for any
particular approximation (the series of line integrals are terminated at a
specific power of A ) it 1s essential to take into account also the equa-
tions relating the variations Ou,, 87, Ow,’, 8u,", 6v,, dw, and their
derivatives. These are obtained by varying Equations (%.12) and (4.13)
shortened to a specific power of h . If we take into account quantities
of the first order relative to A in the line integrals (1.25) and (3.15)
(*) which appear in the first of relations (4.1), we arrive at the boundary
condltlons for the plane problem.

ou
R
(L)
du,, da | Ouy da -
+ [Zp,h (a—s + um)?’—’? + Fry — Ugg ’g) - R.] . Gugo} ds = 0 (0.3)
Here R, and R, are the projections of the prineclpal vector of the edge

forces on to the tangént and normal to the contour, u,, and u,o are deter-
mined from (1.11) and a denotes the angle between the normal and the r-axis,

In order to derive the boundary conditions for the theory of thin plates,
we retain in the line integrals (2.1%) terms of the order of » and »3,
then, marking these integrals with an asterisk, we have

*) The comparable order of the integral characteristics of the loading on
the face of the plate can be easily seen from Formulas (3.13) and (3.14).
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M}i’ = 2&@ nxuo + nyvy + 7 ) 6wods+23£ {26““ -8z, +26v0 Bvy” +
(L) {L)
+ ZmAwu;};.(zl{{— 1) 'ﬁo . u + (6guo’ o 617)0 ) Guso — (5'4)

m r P a_‘_wi) ’ (60'+2Aw0) Jwy
z(m 1) (nxu() +Tlgvo + an)'aﬁi} - m—1 ’6(3“’;')"“

m—2 @
[nxAuo +nuAv0 + :: ‘ 8Awo ",(" Z(m—'l) aﬂ 0:] éwo}ds

But from the equilibrium equations (4.13) for the order of accuracy indi-
cated (for simplicity we take ¢.= ty= O ) it follows that

(8[5&%

R Bw a8
n.uo +nyvo’+5;f—— i °)

+ nxAuo + nyAvo + — 1 on
uO' + aﬂl]o =0 (he), UO, + ang =0 (h2), 'ﬁ'ol -'l— 2Aw0 = () (h?) (5.5)
Substituting (5.5) into (5.4) leads to Expression
4 awo awo da 6wo
* ... .= nhd 1. =
OIL,* = g uk @{[ ( )+ T anl 6(,38)
(L
m dAwy Ao %wy QE@ da ] . QE?)
T m—1" Ton '6w°+|:m—-1+’m—as'"6_n_ 6(an }ds
We now introduce the bending and twisting moments of the edge of the plate

G=M,=nM,—nh, H=—M,=—nM,—nM,

as well as Poisson's ratlo v = 1/m and the plate stiffness
D= dph’m
3 (m—1)
Then, substituting (5.6) and (3.16) into the second relation of. (4.1) and
taking into account azwo 8%wq 6,,,0 da dwy Oa
v o T on 3 0 o
we obtain the boundary conditions for the theory of thin plates

§ 00— (2 (3)+ 2 52) 1) -o() - (0 %52+ Q)awa
(L)

LT Bwy Ja d%we dwy O )) ] ( o)} ds = 0 57
+{D(6n3 ~ % on T (633+6n Bs +G an ©.7)
Thus we have obtained Polsson's boundary conditions. By the usual method

integrating the terms containing 6(aw°/ae) by parts we can also obtain
Kirchhoff's boundary conditions from (5.7).

(5.6)
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