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The paper describes a method for deriving the differential equations and 
boundary conditions for the problems of extension and bending of plates of 
constant thickness. The method employs the symbolic notation proposed by 
Lur'e 11) in 1936 for the solutions to the differential equations of the 
theory of elasticity for a slab. These solutions have the form 

mz 
I_!, = cl40 - 

2 (m - 2) 
Sal60 + sue’ - 4 trn”- I) aal% 

mz m 
u =C”O-2(m _ 2) s&60 + =o’ - ‘.$ trn _ 1) ~&~d 

w = swo’ + 2 tmrn_ 2) SA604- two - 4 (mm’: 1) do 

Here 
60 =&so + &ro + wo', 60'= &uo'f &l'o'---&Q 

a a A = 02 = a,z+ ag, al=3y7 as = ay 

where m is Po18son's ratio. 

The symbols c, s, A denote the following differential operators 

(0.1) 

(0.2) 

(0.3) 

Formulas (0.1) are series in powers of the coordinate z written in a 
compact form. .!Chis symbolic notation is very conveneient I.n performing the 
Intermediate computations. The quantities uo, VrJ, wo, uo', ';o', we' which appear 
here depend on the coordinates x and t/ and are the fundamental unknowns 
to be deternrined. In another paper [2] Lur'e obtained a system of differen- 
tial equations of infinite order for these functions (&,..., w,,'); the ques- 
tion of boundary conditions for these, however, was not considered. Obviously, 
the substitution of the symbolic equations (0.1) into the principle of miW 
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potential energy must lead both to differential equations and to boundary 
conditions expressed in the form of series in powers of the thickness of the 
plate. 

An analysis of Formulas (0.1) shows that the displacements of a thick 
plate fall Into two froups distributed symmetrically and skew-symmetrically 
about the middle plane of the plate. The forst group Is characterized by 
the functions ~0, vO, wO' and corresponds to the extensional problem; the 
second is defined by the quantities ua', v,,‘, w. and corresponds to the 
bending problem. The same separation Into two groups will exist also In the 
case of a plate of variable thickness on condition that Its middle plane is 
also a plane of symmetry. This enables us to study each of the abo've prob- 
lems separately, which somewhat reduces the volume of computations. 

From Formulas (0.1) we can easily derive expressions for the stresses. 
We give below some of them (where p Is the shear modulus) 

F = 2c ( aluo + --&) - m+ Sal'60 + s ( 2&uo’ + -=) - mAara*o’ m-i 2(m-1) 

% 
- = 2c wo’ + A) + 

( 

mzsA&, 

[ 

2nwo+ (m - 2) 190’. _ 

1 

mzcfto’ 

P 
--s 
m-2 2(m-1) 2(m-1) 

mzsalaatto mI&a~fto’ 
(0.4) 

zal - = c (also + aauo) - 
P 

m _ 2 + s (alro* + a2uo’) - 2 (m _ i) 

r2.T mzcalfh 
- = s (alwo’ - Auo) - m-_2 

mzsaleo’ 

P + c ho’ + alwo7 -2 (m _ 1) 

The expressions for a, and 7P can be obtained from 
replacing IA,, IA,', a1 by 

o, and T,, by 
uo, 'Jo , a,. 

1. Variation of potmntld onorgy for thr rxtrnrlon of 8 pl8tr. The varl- 
atlon of the potential energy per unit volume 6~ is given by Formula 

In accordance with the foregoing remarks we leave only the functions uO, 

%, 6 ' In Formulas (0.1) and (0.4) which define extensional deformation. 

We evaluate the strains from the displacements (0.1) and vary them; then 

The variations 60, and by,, can be obtained from the variations 60, 

and by,, by the appropriate change of letters. 

We substitute Into Formula (1.1) the stresses (0.4) which depend on the 

quantities UO, u-3, 700 ' and the variations of the strains (1.2), we obtain 

6n1 - = 2 (dluo. cL+8u,, + c~~vo~c~~8vo + cw,,‘. COW,,‘) + 
P (1.3) 

+ c (ho, + 4uo) . ~8 (hvo + hut,) + e2 (4% . ~48% + 4%~c%8f)o) + 

+{,,~&~c8%}+~~8 [cM,~~<Aw--Iw,‘) +c?,@,.s(Avo-&wo’)+ 

+ cwo’.sA&, - a,c (uo.& + II,,.&) sd~t-+, - a,i: (uo.3, + vo.dz) s&t+,] + 

+s (A& - %%‘).~8 (Au, - G.uo’) + s (Au, - i’zwo’)~s8 (Au0 - b’,w,‘)+ 
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The dots in Formula (1.3) have the following meaning: except for multi- 

plication each dot means the termination of the application of the preceding 

operator - after the dot the next operator acting on a different function 

appMes. 

We Intergrate the variation bnr over the area of the plate G . The 

result will consist of double Integrals containing the variations of the 

main wdables (6u,, 6v,, 8w,‘) under the operator symbols. In order to 
derive the differential equations of the theory of thick plates It is neces- 

sary to transform these double Integrals in such a way that they include not 

the operators of the variations but the variations &J,,, a~,, 6~s' themselves. 

Such a transformation is made possible by the formula which generalizes the 

familiar formula of Green to the case of infinite operators [33. This For- 

mula is 

\$ [u.Y(n)v-Y(n>Tj-.VJd~dy= ; 5;{Yk(n,v,V,ds (I.41 
ifi, k=l&) 

Here L is the contour bounding the region Q, yk(n) is the kth 

reduced operator from the operator w(a). The Prwess of reducing the oger- 

ator Y(*)=jj a,*~=ao+aA+a2A2+... 
r=o 

consists of discarding the first k terms and at the same time lowering the 

order of the remaining Laplacians by the same number; thus the kth reduced 

operator is given by the series 

‘r,(A) = i %Ar-k = ab + ak+lA $- ak+2A2 +... 
r=k 

Under the line integral sign in (1.4) there are braces (they could be called 

Green's braces) which are an abbreviated notation for operations on the pair 

of functions with2n the braces. The meaning of this notation is illustrated 

by Expreaslon 
(Ak,B)=Ak. ‘,,,;’ - 2 . A”-lB (1.5) 

The transformation of the variation of potential energy by means of For- 

mula (1.4) leads to reduced operators cL, 8,, X, which are defined by the 

After applying the generalized Green's formula (1.4) to the integral 

fJ Gn,dxdy t the integrals over the area Q will contain only the operators 

a, and a, of the variations 6u0, 6vs, 6wo'. In order to obtain the latter 

in pure form it will be sufficient to use the usual formulas for integration 

by parts 
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\\ U.&Vdxdy = $ U.Vn,ds -\\ &U.Vdxdy 
m w (6, (1.7) 

11 
U . C$Vdx dy = 

(6 
$ 

U.Vn&- 
ss 

&U .Vdx dy 
02 (a) 

Here n,, n, are the cosines of the angles formed by the normal to the 

contour L with the axes x and y . 

As an example, consider the transformation of the term in the braces which 
ap ears in the variation of potential energy (1.3); discarding factor 
P 2 (m - 2), we have, according 'to Formula (1.4), that 

ss 
~60. ~6130 dx dy = (1.8) 

lC2, 

1s c%o&odxdy + i $ {ckcOo, 86o)ds 

W) k=l (L) 

This contains the double integral with the variation 6ito, which has still 
to be transformed by means of Formulas (1.7) 

ss 
c%3,. 660 dx dy = 

ss 
C%. (mu0 + a&o f b0’) dX dy = 

m w 

= 
ss 

(A30 * 6wo’ - c*a,tfo * i3uo - c*&60&0) dx dy + 4 @+I+,. (n&o + n$vo) ds (1.9) 

62) .ci) 

Substituting the integral (1.9) into (1.8) we obtain finally 

$s cfto.c&3odxdy= + cYto+,ods+ 

(n) CL, 

+ i C$ {c&O, 660) ds + 5 s (c%*~ wo’ - cV&~. 6uo - cW?r,. 6~0) dx dy (1.10) 

k=l (i) (fi) 

Here we have introduced the natural notation for the quantity 

%ul = n,6uo + n,6vo, 

which is obtained from the variation of the dlsDlacement IL_,, normal to the 
contour L bounding the middle plane of the plate. 

-"_ 
The displacements of 

the middle plane of the plate in directions normal and tangential to the 
contour L are given by Expressions 

%c = nxuO + nyva, aso = nXvo - nyuO (1.11) 

The variations of the quantities (1.11) will occur in the transformed 
Fxpresslon for the variation of the potential enery integrated over the area 
of the plate. 

If we perform analogous transformations to (1.8), (1.9) and (1.10) with 
the remaining terms in Expression (1.3) (In all Formula (1.3) contains forty 
such terms), we obtain the variation of the potential extensional strain 
cnrrgy integrated over the area of the plate 

8nl dx d!] = 

CL) 
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(1.12) 

The functions l(1), lij and gKii, which appear in the expression for the 
variation of Potential energy (1.12) are defined by Formulas 

(c2 - s*n) A] 60 

4mz 
I(‘) = (4 - GA) (&wO - 0240) - m-_2 csD&zuo' + 

(1.13) 

+ (c2 - s2A) A] mo 

iwwo 
lQGan - 

mz &A0 
n,s2Au~ - nysaAVo - m--z an 

204 = ca pzuo - &uo) 

ma9 mz 
1” = 2(m_22)8 sv100 - m-_2CSU0 

gkol= s&p, ghm = 2ckgt g,&‘l = 2c&gl, gd” = ck (hg’ + &g*) 

mz 
gk 21 = - skiI, gkY = 

2ck& + mzsk_,g 

m-2 ’ gk s1 = m-_2 ckil (1.15) 

gk41 = - s2 s&hg? gk4’=--, -2 k .-E_ s (&gl + &gZ) 

mzsA& mzs&60 
g=cwd+qrn_22) g’=cuo- 2(m_2) 

(1.16) 
mzc&ft0 

jl = s (Au0 - 31~0’) + ___ m-2 

The formulas for lt2’, l”, 1”. g;lo2, gkla, g 223 
P 

gI“s3 gk’l’* g2, ia are obtained 
from the expressions for $I’, 101, 111, gkol, g,( 1, gkal, g,(Jl, gk41, gl, il by repla- 
cing we and a, by bO and da. 

It now remains to integrate Expression (1.12) with respect to the coordi- 
natr 2 (over the thickness of the plate 2h. ) ; in doing so we have to eva- 
luate integrals of the p oducts of the operators u, s, 1 and also the 

fi _ reduced operators ck7 skV kt sk 1 etc. The first kind of Integrals of the 
products or trigonometrical functions and polynomials and can be evaluated 
In the usual manner. We Introduce the following notations: 

The integrals 
operators (1.17) 

sin hD S-hC 
C 7 cos hD, S=-ii- A=7 

of the first kind can then be expressed In terms of the 
and the thickness of the plate; for example 
h 

c 
c* d; z I! .j. cs, 2t scs d: = hS2 ‘- C.\ = .E 

11, :I, (1.i8) 
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h h 

s 
sa dz = hS” - CA, 

s 
(ca - GA) dz = 2CS 

‘;,;;I 
. 

-h -h 

It Is more difficult to deal with the Integrals which contain products of 
reduced and ordinary operators. These Integrals have to be expressed In 
SebieS in powers in powers of h . Consider, for example, the Integral 

I, = s” ckc dz = 2 $j 5 
(_~)tL+8+kh2~+28+2k+1~~+8 

-h 
n=O 8=o (2n + 2s + 2k + 1) (2n + 2k)! (2s)! 

Denote n + 8 = r and sum for the Indices f and s . If we now group 
together terms in the appropriate way we obtain 

O3 (_,)r+kh2t+2k+lar r 
I,=22 1 

r=o 
2r + 2k + 1 s; (2r- 2s + 2k)! (24 = 

= $j (_,)r+kB to) har+ak+l Ar (1.19) 
r=o 

r+k*k 2r+2k + 1 

Since Integrals of the type Ik are summed for the reduction lndzx k , 
we form the sum from Formula (1.19) and thus obtain 

5 1, = i ; (-i)“+kB,.$, k 2,y;;‘c 1 2 

k=l k=l r=O 

Setting F + k - p , summing with respect to k and P and rouplng 
together appropriate terms, we obtain the top line In relations 1.20) 

ii ckc dz = 
k=l -h 

jl (;l$$)+’ $j B,(;o)AP-k 

k=l 

Sk _ls ds = _ ; ‘-;$f;’ i A&l)AP-k 

k=l -h P=l X=1 

kg1 fh 

zcks dz = p$l (-;$;?3p+’ 5 At&P-k 

k=l 

(1.20) 
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The numbers with three Indices A$” and B$? 
tors of (1.20) are defined by Expressions 

which appear in the opera- 

P-k 

A,@=- 2 
8=. (2P - 2s + n;! (2s + I)! ’ 

P-k 

B?J:) = g (Q-229; n)l @)I (1.2*) . . 

The values of A (@ and B (N for n=-2, -A, 0, I, 2 3 for certain values 
of the Indices p *&:a k argkgiven In the following tkbles. 

Tablo of v8lu.r of A$) 

P k 

1 I 1 

2 1 

2 2 

3 1 

3 2 

3 

I 

3 

- 

- 

?I=-_2 

2 
4. 

3 

1 

4 - 
15 
i - 
4 
1 - 
I2 

P k 

We evaluate 

n=-2 

2 

2 

1 
2 

3 
7 

12 
I 

12 

?a=-I 

2 
2 

3 
i - 
3 
4 - 
45 
13 
-Gil 
1 

60 

- 

i 

1 -+ 

1 13 - 
4 180 
I 1 

12 -a- 
i i 40 - 

168 
i i 

60 315 
1 

%i 
i 

iia 

- 

n = -i 

2 
4 

3 
I - 
3 
4 

is 
11 
60 

1 
xii- 

- 

- 

- 

- 

Tablo of v8lu.r o? BsTk’ 
- 

- 
n=O n=l 

1 

I 
12 

1 - 
12 
31 - 
360 
2 

45 
1 - 
360 

h 

i 
3 
11 
60 

i - 
60 
I9 - 
840 
ll 
1260 

1 - 
2520 

n=2 

i - 
12 

1 
60 

I 
360 
13 

60180 
31 

saGsd 
1 

2mO 

n=2 

I 
12 
2 

45 
f - 
360 
11 
2x0 
1(1 
20160 

i 
20160 

- 

- 

- 

- 

n=3 

i 
60 

1 
315 
i - 

2520 
191 

907200 
13 

181440 
i 

181440 

n=3 

??“Z3 
163 
181440 
37 

181440 
1 

181440 

Lij = ’ s p ds 

-h 

using Formulas (1.18) and obtain 

a m 
Loo = an (--cA)wo’-22(nl _ 2) EeO 3 f (n,CSuo + n!,CSro) - fluno (1.22) 

LO’ = 2 (h + CS) ug - 6) E&fjo, LO’ = (h ‘- CS) (antto - hl.0) 

im 410 2 
Jy=- m _ 2 EAwo’ + m-_2 00 + (,,L _ 2)* [2 (tn - 1) E - J)I?IL?CS] 460 
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Jyo = m+(nxEAuo + ngEAvo) + 2 (mm_ 2) $ [ms (3 + 3C+ 60 - 
“,;;:I 

* 

( 3mi30 
-E 7~0’+~(~_2) )I 

%(h-3CS)+E a$-2(m_2) 1 mEuo 

Taking into account Formulas (1.17) and (1.18) and introducing the nota- 
tions 

H = (m - 2) hhc” - mh%‘SA 
h 

(1.23) 

for the operators we can evaluate Lti)= 
s 

I(") dz; we obtain 

-h 

L(l) = 2Cs (&w& - Auo) - 

2mEA 
(1.X) 

L(O) = 2cs (2wo’ - 60) - n-_2 wg’ + 

The expressions for Loa,Lla and L@) can be obtained from the formulas 
for LOl,Lll and ~(1) by replacing IA, and a, by uc and a, 

Let us now find the variation of the potential energy of the whole plate 
in its extension h 

6l-I1=! dz\~Baqdxdy 

-h in) 
To do so we Integrate Expression (1.12) over the thickness of the plate 

2h. making use of the device we have just obtained, namely Formulas (1.20), 
(1.;2) and (1.24). We thus obtain 

ml _ 
-- 

P 
1s (L(L).Guo + L@).6vo + L(“).8wo’) dx dy + cfi (ag .6uo + g &JO + 

w ci) 

Here the quantities $2 can be expressed by means of modified Green's 
braces 

aAk--‘B aAP-kA 
[A, B] = Ap-kA. T - - 

an 
. Ak-lB (1.26) 

Thus o,,' can be expressed by means of the braces 

op:= [&wo'-Acuo, 6uol+ [&wo'--Are, 6ro1, u$ =_[Mto, a&Jo]+ [MO, ~r6601 

ap; = [&uo, &6uo] -f- '/z[(&v,+ &Jo), 6 (&vo-k &uo)l + [hwo, hbol + bo’, 6wo’l + 

+ A2 [60, 660], CD,; = (81~0, 6u.01 + I&~o, 6001 + bo’, 6601 
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@r;: = PIWO’ - ouo, &bwo’] + [aSv&‘ - DvrJ, &3Swo’], 

Qlr;= Iauo---lwo’, &660] + [nvo-aaawo', azseoj $ 

- lalazso, 6 (&Q+ aauo)] - [a2260, azsoo]. u$,s = [Wo, 6alwo’] + 

-i- 13260, aaswo’l+ [hue, &%60] + [&vo + aauo, &dalwo] + [tiavo, a22Seol 

@,,9 = ~~12fb ~126601$- 2 [WMO, ala&80~ -+ f&260, a2%60] (1.27) 

2. VaPlation of potential energy ot bedIng of a plate, 
The deformation of a plate in bending is characterized by the quantities 

ual. bo’, wo . Evaluating the variation of the deformations corresponding 

to bending in accordance with (O.l), we obtain 

&,. = .~~,~~~~-~~~~~~) I%&‘, By, = s (a&J; + &jiuo’) - ~~~~~) s**,l (2.1) 

% = - ~:_‘,&I - 4 tm _ i) 
m (s -t- zc) 6+0P, 

csy,, = c (6uo’ -t_ &6wo) - 
mzs 

2(m-1) 
altxto' 

The variations 6e, and by,, can be obtained from the variations 6e, and 

6yxxby an appropriate change of letters. We substitute into (1.1) the bend- 

ing stresses corresponding to %‘, v0 ‘, ~lr, from Form&as (0.4) and the vari- 

ation of deformations (2.1). Then 

- = 2 (Sal&)‘. d&&J’ + &V~‘. S&&J’ + saw0 * sn6wcl) + yyy$‘) + 8fi2 

P 

+ 
?n%c#o' 

8(m - I)2 * (s + ~C)~% -z(mm_l) qa,s(up, + v&a,)a,hs; + 

+a,s(UO'.,l+t.o'.a,)n2hag']-4;nm~*)2. h~dth)'$- (2.2) 

+ ,(mma *~2(~~~2~~'* ~~~a~#~' + 2~~~~~~~ * ~~~~~~~~~ + ~~~2~*‘. ~~*2~~~) 

Integrating the variation of potential energy per unit volume (2.2) over 

the area of the plate 0 and transforming the integrals so obtained (in all 

there will be forty six) by means of the generalized Green’s formula (l-4) 

and the formulas for integration by parts (1.7), we finally obtain 
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+ (fk41, ala660’) + {fk4a, aaWo'I+ {jk409 Wageo'Il ds + 

+ 51 (k(l).&, + k W. 6vo’ + k(O). 6wo) dx dy 

(n) 

(2.3) 

Relations (2.3) contain the variations of the quantities 

a20 
00 = nxu< + nvv0’ - an , usO’ = nxvO’ - nyuo’ (2.4) 

The functions k(j), k"j and jki', which appear In the expression for the 

variation of potential energy (2.3) are determined by Formulas 

2ms 
k(i) = (Ca- s2n)(uo’+ &wo) - m-_l cs&3lw~- (2.5) 

- 
4 (,"_ i)a [(m -2) sa + 8 ( m - 1)~~s + mz2(~2-~an)] aleo' 

mz 
Ca - Sag f m--l CSA AW,, $ 

+ 4 (mi_ i)a[(3m2- 6m + 4)san - 4(m - i)aca - m2za (ca - GA) A] eo' 

km’= nrCaUo’ f nyC’V0’ j- & CaWO - 2mt~~?ij 

L 
’ + kos] , 

mXs&i?o’ 
kO1 = 2s2uo'-2 (m _1) 

kos =2m~Aw0 1 
m - 1 + 4(m - i)a 

[4m (m - 1) zcs - (m - 2)2 s2 + maza (ca - saA)] 60’ 

kO4 = sa (&uo’ - &vo’), 
mh 

k" = 2(m _ 1) 
mh&& 

L 4 (m _~)-Suo' I (2.6) 

,+"J = 2 @m_ 1) [n,(hA - zc)suo'+ 7zU(kA - ZC)SFO'] - 2 @:I 1) aF + 

m2 a h"A - 
-'-6(rn - 1)s an 

,a,?_- - 
2 

eo' 

/k”’ = Ck’P’r fkm = 2Sk__lf’ jk” = 2sk_l&j1, fk” = Sk (aaj’ + a1/a) 

fkm = y(s) tsk + zck) f + 2 ;E21,a skscto’9, !k= = - 2;;f1, (2.7) 

jk4'= - 2~~~~, , jk4’ =-z (lI”_l ,)(&!j’+ aIf?) 

Here (2.8) 

f =aAwo+ m (s + 4 6oj, f’ = suo’ - mh&& mzsalt?o’ 
4(m-1) 4(m-1) ’ 

‘p’ = c (r&l’+ &WI)) - 
2 (m - 1) 

Formulas for kt2), koa, kla, fkoa, fk”t fks2, !K”V I” 
(2.5) to (2.8) by changing the letters. 

and 'pa can be obtained from 

In the Integration of the Expressions (2.3) over the thickness of the 
plate, In addition to Formulas (1.20) wk must use analogous relations con- 
taining the operators X and X, for the subsequent transformations. These 
relations can be expressed In the form 

i \ skh&,= 5 (-;;y;+' i CTJknP-'l 
k- 1 L/r p=1 k=l 
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O3 (_ 1)P pp+5 P 

b&z = 2 2p +_ 5 2 DpkaP-k 
k=l -“h 

h&d2 

k=l 41 

The derivation of relations 
coefficients C,, , D, and Fpk 
three Mice8 (1.21) 

(&k = Bp+l(l,$ - A,+f& 

Dp/,. = Ap,j2' - A pJ3’ 9 

p=1 k=l 
(2.9) 

(2.9) follows the same pattern as(1.20). The 
can be expressed In terms of the numbers with 

Epk = ApkCo) + ApkC1) + B,,(O) + B,,(l) 
(2.10) 

F pk = Bp+l!‘,i - A (2) _ B 
WI, k ,+,:s + ‘%lIS 

We now evaluate the operators 

-h 

K’j’ = s” k(j) dz 

-h 

using Integrals of the type (1.18). We obtain 

/P = 2 (hS2 - CA) u; - 

Koo = h (n,~,’ + nguo’ + 2) + n,CSuo’ + n&SuOl+ 

+ g [csw, - $y) -+ P] 

mEAwo KO3 = ___ 
m-l t 1 2(m - 1)2 

[(m - 1) (m - 2) E - (m - 2)2 hS2 -;- m2122CS]60’ 

pJ= - 
aewo 

4 (,“_ 1) an 
- 5 (n&Au< + n,CAvo’) + 

+ m2 qq 
8 (m - I)2 an 

+ +2hS2-3h2CS)$j 

p = m2 
( 

h2 -- 
8(nz- I)2 3 

$- E + 2hP + h2CS) ‘$ - mj;fLO~;jc;’ u”’ (2.11) 

K(l) = 2cs (z&o’ + d,wo) - -g$ d,wn- ; I; ty; r31eo’ 

K(O) = - 2cs (So’+ 2&o)- ;q wg- “2:“m-f; Af+o’ 

(2.12) 

F = mh2CS+(m-2)hSa . 
m-l (2.13) 

Formulas for the quantities K02, K12, K(2) can be obtained from the for- 

mulas for Kol,- Kfl, K(1) by replacing ~0' and a, by v,,' and ba. 

The variation of the potential bending energy of the whole plate In Its flex- 

ure is obtained by integrating expression (2.3) over the thickness. We have 
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ma -= 
~~ 

pp. (jugl + $22) * &,I( + K(O) * 8wlj) dz dy + 

+$ (a!!!. ,:.r + !gi . dvo’ + ~“0. 8wo + KOS .800 + Ko4: duso’ + Kl” a 8-60’ + 

IL) 

The functions Y,kj are defined using the modified Green’s braces (1.26) 
by the following relatlions: 

(2.15) 

Yp9 = IAU~O, 8@1t’J, ypkl = [uo’ + +%, 6 (Uo’ + hWo)l -i- 

+ [co’ + %=-o, 4 (~0‘ + %wdl 
ypk= = [AWO, &J, ypk3 = [f+i, atli,I, Ypk7 = [flo’, 8&,‘q 

Ypk4 = 2 [i31~o’, ~QL~‘J + [i31z~o’ + a,~,‘, 8 (d,v,’ + &,‘)I + 2 [dgo’, 8&v,,‘]+ 

+ 2 (L 1) 
Ypkfi + nt-2 Yp$, ‘J!@S 

2 (??I - 1)” 
= [aleo’, 84&,‘] + [&tio’, 8d.,,60’] 

Y STY pk pfi’ - [+?o’, 8 (u:; + &wo)J - [&&,‘; 8 (vt,’ -t d,w,) J 

‘fppk’ = [ uo’ + t?,zco, 8d,60’] + [ vo’ + ~$LQ, 8&B,,‘] 

Yp,:l = [dIa2’Eo’, 6d,V0’] + 2 [&&6o’, 8i)&60’] + [dsa&,‘, 8d,%,‘] 

Yplig = I&%-,‘, 8d,u;] + [d&&,‘, 8 (d2uo’ + d,r,‘)] + [d&,‘, 8&q,‘] 

Y@lO = [&a;, Qi31%o’] -+- [Qr,’ + iflug’, 84&f30’] + [&g~~‘~ I&%,‘] 

3. BlomentU work dona bjr tbo rxtwml toroor wplird to the plrtr. 
We first calculate the work done by the forces applied to the faces of the 
plate ; the elemental work of these forces is 

681’ = * 
\C 

(p~.&r’-! p-.&l-) d.7: &J @.I) 
ii$ 

Here p’ denotes the vector of the external forces per unit &rea of the 
face E = h ; the vector $- acts on the face I - - h ; u+ and u- are 
vectors of the displacements of points on the faces 2 m f h. . Expanding 
the scalar products in (3.1), we obtain 

pf .6w ‘- p- . h- = p,+&4+ + p+uGv+ + p+,&u+ + px%l- + p,-6v- + p,-bw- 

The values of the variations of the displacements at the faces can easily 
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be obtained by varying Formulas (O.l)'and substituting for E the values 
+h or -_h; for example, 

&At = au, - mhs 
a1660 + SSUO - mh 

2 (m-2) 4 fm --1) 
G%3d (3.2) 

The operators C , S , 
defined by (1.17). 

A which appear in Formula (3.2) have already been 

It is evident that the problem of the extension of a plate corresponds to 
combinations of surface loadings given by Formulas 

Px++Px-=%, Pllf + Py- = rig* Pz+ - Pz- = 5 (3.3) 

whereas the bending problem corresponds to 

PX +--P x- = tw plJ +--Pv-=tv, Pz+-f-Pz-=P (3.4) 

In addition, we introduce the differential combinations of the loading 

al& +%ly = ri*, d& +aat, = t* (3.5) 

Then, substituting the variations of the surface displacements (formulas 
of the type (3.2)) into the elemental work (3.1) and taking intO tmxuit the 
nota’t~ons (3.3) and (3.&), we obtain separate expressions for the elemental 
work done by the surface forces in the problem of extension (6,4,) and in the 
problem of bending (Ma) of a thick plate 

We transform Expressfons (3.6 with the aid of (1.4) and Formulas (1.71. 
Using the notations (1.5),(1.11 ,(2.4) and (3.51, we omit the aaleula$lons 1 
and simply state the result 

(3.7) 

Here for brevity we have introduced the quanyitles 9 and 8, which denote 
the following differential operations on the surface loading: 
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* 
e =2pn-2) (hQ* + AASh 8= 4 (,“_ 1) (At* - fa4 WJ) 

Note that with@ loss of generality we can assume that there is no sur- 
face loading p , since the problem of the equilibrium of a thick plate 
(both In bending and In extension) can always be assumed to consist of two 
parts: (1) the problem of the equlllbrlum of an infinite slab under the 
action of surface loading, the solution of which is known [&I, and (2) the 
problem of the equilibrium of a thick plate loaded at the edges with no load- 
ing on the faces. Thus the ptioblem of the state of strdss in a thick plate 
Is reduced in fact to the problem of finding homogeneous solutions which 
correspond to the absence of loading on the faces[5]. The derivation of For- 
mulas (3.7) and (3;8) was carried out with the aim purely to give a uniform 
approach to loadings of any kind. 

We proceed now to the calculation of the work done by the external forces 
applied to the faces of the plate. We denote the vector of the surface 
loading per unit area by qn ; then the elemental work done by the external 
forces will be 

h h 

&A”= dz 
s $ 

q,.iiuds = dz 
s $ (q,& + %,$v + q,&) ds (3.10) 

-h G) -h m 

wiZeFZ%a~'(uO:l~ 
and substitute the result Into (3.10) In accordance 
Then we change.the order of Integration and separate 

the parts of the elemental work done by the external forces which refer to 
extension bA3 and bending 6A. . We obtain 

h h h 

SAs = q,,& ho + 
s 

q,,& 6~0 + 
s 

q,,& 6wo’ - 
-h -h 

h h h 

- 2 (mm- 2) (1 
qnxsz dzsaleo + 

s 
Q&Z dz&aat?o - 

s 
qnrh Adz&, ds (3.11) 

-h -h -11 

&& = $ { 1 qnxsdz &uo’ + i q,,sdz Svo’ + T, q,,z cdz 6wo - 

(L) -h -h :h 
h 

Adz sale{ + jh q,&dz &8o’ + jh qnrszdz~b’)] ds (3.12) 

In an actual calculation of the Integrals In Expr&slons (3.11) and (3.12) 
we expand the loading g, = q,(z) In a series In powers of E , then, after 
completing the relevant calculations the formulas for bA3 and 6.4. are alSo 

represented In series In powers of the thickness of the plate. 

Another method Is to Introduce the statical and hyperstatlcal character- 
istics of the distribution of external forces applied over the faces of the 
plate 

R,= [ qnxd:, R, = [ qnvdz, 
-h -h 

0 = j qnzdz 
-h 

h 

A/!, -= ‘c qnxzd:, 
h 

M,=- c qnyzd=, w- = 

:h 2, 
s qnzzdz (3.13) 

-h 
h h 

qnxz?” d;, *j c!lll 
‘I 
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h h 

9 
s 

q,,zantl dz (3.14) 

-h 
h n 

w(m+l) = ,;;-& 

Here R, and R, are the projections of the principal vector of the sur- 
face loading on the x and y axes; 0 Is the shear force; MX and M, are 
moments about the x and y axes. In addition we have the hyperstatlcal 
characteristics: W is a blforce; R,(m) and RyfBn) are po1yve:tors; 
,$.f @n+l), M (m+lJ are polymoments;Q(af’J are shear forces and flnally,@s+l). 
are” polyfo?ces (polyblforces) of various orders. A assume 
their original meaning (0.3) and using notations (Et$%d”138i4), we obtain 

8As = $ {R,Guo + Z$,&vo + Wbwo’ + i (R,(2n)-a (A*uo + 3 &A"+'~o) + 
(U n=1 

+ R,@“) 8 A%o,+ m-_2 ( nm arAn- e. + Ww+l) &. Anw ’ 1 ( o - 5 A%)]} ds (3.15) 

tjA,= cf {My&o'-Mx&o'+ QSw,,+ i [Mp')d (Anuo'+ e2 &An-%,‘)- 

(L) n=l 

- M,(*"+')ti! 
( 
A'$,' + s2 &An-l&,') + Qtan) .6 (A”w, + & A”’ e{)]}ds (3**6) 

4. MfBrontlU l Qu8tloju O? tlaa thaorp of thiok plgtor. In order to 

derive the differential equations (and boundary conditions) we equate to zero 

the variation of potential energy of the whole system which contains the 

variation of potential strain energy of the plate and the variation of poten- 

tial energy of the external forces. The latter Is equal to the elemental 

work done by these forces but with a negative sign. The extension-compres- 

sion and bending problems can be studled separately. From the principle of 

minimum potential energy for both these problems we have 

6n, - &4, - 6A, = 0, MI, - 6A, - 6A, = 0 (4.1) 

The quantities which occur here are given by Expressions (1.25),(3.7), 

(3.14),(2.14),(3.8) and (3.15). Formulas (4.1) contain double Integrals 

over the region of the plate (a) and an infinite series of line Integrals. 

Equating to zero, the coefficients of the Independent variations &.L,,, &Vc, 

6Wo’, &us’, 6Vc’ and &D,, In the double Integrals, we obtain the differential 

equations for the problem of extension L and of bending K 

L(l) = + (Cr&+E), K(l) = -+ (St, - d#) 

Lt2J = -!- (CT) -&E), 
P v 

P’ = + (&St, - a,@) (4.2) 

-L(O) = _+st;_ S), - K(O) = $ (- Cp + .A.e) 

In the last of the equations of system (4.2) the signs have been changed. 

The differential equations of equilibrium for a slab have been obtained 
by a different method by Lur’e 121. We Introduce the column matrices (vec- 
tors) 
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and the square matrices 4 = 11 4kI 11) a = 11 akl 11 with elements 

akk =--2 sA+sa,a 2mhC a a , ak,=-- ak3==2ak 
( 

mhC 
m-_2 kl’ S -- 

m- 2 

ask = - - mwL 2 (2C -+~A), asa= - &(2(m-l]C+ mhSA1 (4.4) 

akk = 2c_- s aka, aks=ak 

ask = ,2 .1 [(m - 2) S + mhC1, asS= --& [(3m-2) S-mhC] (4.5) 

where k, 1 = 1, 2 . Lur'e's equations can then be written in the form 

The matrlpes a 
the factor 

and (L transform the vectors u, w (to the accuracy of 

mlnants of th~$%~e?ess 
vectors on the faces of the plate. The deter- 

give the operators of the solving equa- 
tlons for the stress func&o~dofaLurle [2 and 43. These determinants are 

IaI=-_+(CS+h)sAa, IOI=&(CS-h)Ca (4.7) 

In addition to the matrices a and a , we introduce the matrices b 
and B which transform the vectors u and w Into the displacements at tine 
faces of the plate. The elements of these matrices are as follows: 

b,, = C - 
mhsa,s mhsa,a, mhSa, 

2 (m -2)’ 
b,, = - 

2(m-2) ’ bka’-2 (m-2) 

bsk= 
mk%+ bp=s+ mAA (4.8) 

2 (m-2)’ 2 (m-2) 

&k = s - mAa,¶ mAa,a, mAAak 
4(m-I)’ 

&I = - 
4 (m-1)’ 4(m-1) 

(4.9) 

The determinants of the matrices b and B give the operators of the 
solving equations for the ftictlons of displacements In problems of a slab 
or a plate for displacements specified on the faces a=*h. These deter- 
minants have the following values: 

ibl=2(mY_ 2) 
[(3m - 4) CS - mh], I P I = G (ms_ 1j Wm- 4) CS + mhl (4.10.) 

Equations (4.2) can be derived from Lur'e's equations (4.6) by pre-multl- 

plying them by the transpose matrices b* and ,!I* , the matrices so obtained 

e =_ b*a, c: = p*a (4.11) 
in contrast to the matrices a, a, b, B, are symmetrical. Their elements 

will not be written out since they form the left-hand sides of Equations 

(4.2) defined by (1.24) and (2.22). The determinants of the matrices eand 

c can be obtained by multiplying the first of the determinants (4.7) and 
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(4.10) or the second of the determinants (4.7) by (4.10). Since the matrices 

b and S are nondegenerate (*), there Is complete agreement between 

Lur'e's equations (4.6) and Equations (4.9) derived here. From now on we 
shall start from Lur'e's equatdons, since these are simpler. 

Assuming the operators C and S in (4.4) and (4.5) to have their lnl- 

tlal meaning as series in powers of the thlchess of the Plate, we can 

rewrite the system (4.6) In the form 

5 (_ 1)” h2n+l 

n=O (2n + I)! A” [?lWOP -_nuo - (an + 1) &A] = 5 

(4.12) 

We have omitted the second equations of systems (4.12) and (4.13); they 

can be derived from the first equations of these systems by replacing 

81, uo, TX, uo' and t, by 92, uo, Q, 210’ and 4/. 

From equations (4.12) with n - 0 and In the absence of surface loading, 

we can derive the familiar equations of the plane problem expressed in terms 

of the displacements uo and uc (I&,' Is easily eliminated). The next appro- 

ximation (n - 0 and n = 1) refines the plane problem and leads to a fifth 

order harmonic system of differential equations requiring five boundary con- 

ditions. For system (4.13) retention of only the first terms (n = 0) gives 

no result (**). Retaining two terms of the series in each of Equations 

(4.13) we obtain, after ellmlnatlng the rotations uO',and DO' the blhar- 

monlc equation of the theory of thin plates. In order to obtain a more accu- 

rate theory of bending more terms must be retained in the summations in 

(4.13). 

5. Barrndrrg 0caditioAr o? the theory of thiolc plrtrr . Relations (4.1) 

lead to boundary conditions, as well as differential equations, In the form 

of an Infinite series of line integrals. Confining our attention to a speci- 

fic power of h , we can derive the boundary conditions for a system of dif- 

ferential equations corresponding to the approximation selected. There are 

in addition certain general concepts worthy of mention In connection with 

the boundary conditions for thick plate theory. 

*) Degeneration of the matrices b and S occurs when there is no dis- 
placement at I -i f h , i.e. when the faces of the plate are fixed. This 
case Is not considered here. 

**) All the displacements (uO', uO', ~~00) are eliminated from the system 
leaving the condition of equilibrium of external forces &t, -j- &t,,+p,h= 0 
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Formulas (3.13) to (3.16) lead to the obvious requirements applicable to 

the force conditions on tWe edge of a thick plate: the equality of the stat- 

ical characteristics (the principal vector and principal moment) of the ex- 

ternal surface forces to the statical characteristics of the stresses a, , 

TII, , 7,, as well as the hyperstatlcal equivalence characterized by blforces, 

polyectors, polymoments and shear forces of higher orders. In particular, 

on an unloaded free edge of the plate the Integral characteristics (3.13) 

and (3.14) of the stresses an, nI 7 and r,, must be equated to zero. 

we 

Similarly, for a built-in edge of the plate (In the extensional problem) 

must impose the conditions 

ug = 0, vo = 0, wgt = 0, A%O + fi2 dlAn-‘6,, = 0 

A% + --$?2An-J~,, = 0, Anwo’ -$Antbo=O 
(5.1) 

(n = 1,2,...) 

since If the force factors are nonzero the variations of these quantities In 

the expression for the elemental work (3.15) vanish. 

Intheproblem of bending of a plate the conditions for a built-in edge are 

UO’ = 0, v; = 0, wQ= 0, A’%,,‘+ 2 (m”“- 1) ~,A”-‘&, = 0 
(5.2) 

A% + 2t;:ij &An-%' = 0, A^zuo + 2(;;ij An-%,' = 0 (n = i, 2,...) 

Note also that In est bllshlng finally the boundary conditions for any 

particular approximation (the series of line Integrals are terminated at a 

specific power of h ) It Is essential to take Into account also the equa- 

tions relating the variations 6u0, 6v,, 6w,,', 6u,,', 6Vo', 6w, and their 

derivatives. These are obtained by varying Equations (4.12) and (4.13) 

shortened to a specific power of h . If we take Into account quantities 

of the first order relative to h In the line Integrals (1.25) and (3.15) 

(*) which appear In the first of relations (4.1), we arrive at the boundary 

conditions for the plane problem. 

Here RI apd A. are the projections of the principal vector of the edge 

forces on'to the tangknt and normal to the contour, u,~ and u,~ are deter- 

mined from(l.ll) and IX denotes the angle between the normal and the y-axis. 

In order to derive the boundary conditions for the theory of thin plates, 

we retain In the line integrals (2.14) terms oftheorder of h and h3, 

then,marklng these Integrals with an asterisk, we have 

l ) The comparable order of the Integral characteristics of the loading on 
the face of the plate can be easily seen from Formulas (3.13) and (3.14). 
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%$or + +%’ + an ““) * &u*ds + 2; ji { 2 f!g * 8uo’ + 2 ag - ib* + 
(L) w 

+ 2mAw + (m + 1) 60 
m--l 

* Bu*’ + (Qzo’ - dpY*~) * h.zs~ - (5.4) 

2 (m”- 1) i 
auto -. n,th’ + ryO’ + s 

1 
l 6%’ - 

@O 4 WPJO) 
m-1 

.6(Z)-- 

- I nA%’ +qJLPd + m ~ 1 m--3 l F + 2 ;--“,, c$] 6wlj} ds 

But from the equilibrium equations (4.13) for the order of accuracy indi- 

cated (for simplicity we take t,= t,= 0 ) it follows that 

nxusf +nyvrJ~+~~ = T A2 ('q + n,.~u~ li_ n&_vo’+ 5’2) 

ug’ + a,wo = 0 (P), 210’ + azw(j = 0 (P), 60’ + 2Aw, = 0 (h2) (5.5) 

Substituting (5.5) into (5.4) leads to kxpreaaion 

~~~*=~~hg$([~(~)+~~].6(~~- 

fLf (5.6) 
m 

-_.~~.8wo+[~~+~~-~.~].B(~)}ds 
m--l 

We now introduce the bending and twisting moments of the edge of the plate 

G z M, = n~~~-~~i~~~, H = --MM,= -n&f,---r8&, 

as well as Poisson's ratio v = l/m and the Plate stiffness 

D 
4phsm 

= 3(m-1) 

Then, substituting (5.6) and (3.16) Into the second relation of (4.1) and 

taking into account 
~ws=~+~+~~~-~~ 

we obtain the boundary conditions for the theory of thin plates 

rfhus we have obtained Poisson's boundary conditions. By the usual method 

integrating the terms containing b(aur,/W) by parts we can also obtain 

Kirchhoff's boundary conditions from (5.7). 
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